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ABSTRACT 
Spiking neural network is the 3rd generation neural network. In this 

paper, we derive spiking neural network‘s topology and the fuzzy 

reasoning by restricting to the usage of biological components. 

Input encodes information in the timing of spike train. Fuzzy 

reasoning is used on biological components such as dynamic 

synapse, receptive field, inhibitory and excitatory neurons. The 

enrichment of the flow of information is done by dynamic synapse 

and the neuron selection by using receptive field. Modeling the 

dynamics of the limited synaptic resources makes neurons 

selective to particular spike frequencies. The receptive field 

behaves like fuzzy membership function which enables the 

individual neuron respond at certain spike train frequency. The 

network is supervised and learning occurs at the output layer of the 

network. Various issues arise while learning with supervised 

method takes place, namely convergence and continuous updating 

of weights after the goal is achieved. These issues are discussed in 

detail and are resolved. The modified SHL algorithm is used for 

learning. The classification problem of XOR is solved.  The 

implementation is done on MATLAB.  

General Terms 

Spiking Neural Networks 

Keywords 

Spiking Neural Networks, Fuzzy, Dynamic Synapse, Receptive 
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1. INTRODUCTION 
The recent development in spiking neural networks (SNNs) and 

computational neuroscience resembles the current understanding of 

neural mechanism within the human brain. From the history of 

neural network a common belief was that essential information in 

neurons is encoded by firing rate or rate codes. The new era of 

computational neuroscience shows spatio-temporal distribution of 

spikes in biological neurons. The third generation of neuron 

modeling (spiking neurons) is based on realization that the precise 

mechanism by which biological neuron encodes information is 

poorly understood. The models of spiking neurons are both 

computationally efficient and biologically accurate [1]. The two 

important roles of biological neurons in the flow of information 

within the neural circuit are excitatory and inhibitory.  The 

excitatory neurons are responsible for routing information through 

the network and inhibitory neurons are for regulating the activity 

of excitatory neurons. There are more excitatory neurons than 

inhibitory neurons [2]. The synaptic transmission is unreliable and 

involves lot of uncertainty [3].  Due to this uncertainty it is 

difficult to say which biological feature improves the  

 

computational capability in neural dynamics. The learning in 

neuro-computing draws its inspiration from behavior of human 

learning. Where the human expertise is implicit Fuzzy IF-THEN 

reasoning provides a language to deal [4] modeling biologically 

plausible SNNs presents a significant challenge given a vast scale 

of real networks. It is generally recognized that SNNs are capable 

of exploiting time as a resource for coding and computation in a 

more sophisticated manner than a typical neural computational 

model [5] [6] [7]. In Section 2 unsupervised and supervised 

learning methods, dynamic synapses and receptive fields are 

reviewed. Section 3 shows fuzzy reasoning and provides a basis 

for structuring the network topology. 

 

2. REVIEW 
Activity-dependent modification of synapses is a powerful 

mechanism for shaping and modifying the response properties of 

neurons, but it is also dangerous. Hebbian plasticity, in the form of 

long-term potentiation (LTP) and depression (LTD), provides the 

basis for most models of learning and memory, as well as the 

development of response selectivity and cortical maps. Hebbian 

learning is local modification of synaptic modification but it 

suffers from global stability.  [8] 

2.1 Forms of Learning  
There are two types of learning algorithm that can be used for LTP 

or LTD for synaptic weights [9]   which compare the 

interconnected pre and post-synaptic firing rates to a threshold to 

decide whether to stimulate LTD or LTP. The two types of 

learning are supervised learning and unsupervised learning. 

Bienenstock, Cooper and Munro‘s Model (BCM) also shows the 

lack of biological basis. Spike-Time-Dependent-Plasticity (STDP) 

is a non-Hebbian form of plasticity because it acts across many 

synapses and seems to depend primarily on the post synaptic firing 

rate rather than on correlation between pre and post-synaptic 

activity [8].  Hebbian plasticity can also be used to regulate the 
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overall synaptic activity but the strong balance is required between 

LTP and LDT. STDP is the solution to this problem of pure 

Hebbian form. Presynaptic firing that proceeds postsynaptic or 

depolarization can induce LTP, whereas reversing this temporal 

order causes LTD. [10] [11] [12] STDP and BCM are under the 

category of unsupervised learning algorithm and they do not lead 

to required specific goal. Under supervised learning schemes there 

are various categories of coding schemes for different algorithms 

such as Time-to-First Spike, Precise spike-Timing and Relative 

Spike Time. Time-to-First spike suffers from a problem that they 

cannot be used to learn the sequence of multiple spikes. There are 

many algorithms for supervised learning such as SpikeProp, 

Statistical Approach, Linear algebra method, Evolutionary 

strategies, Supervised Hebbian Learning (SHL) and Remote 

Supervision Method (ReSuMe). Each of the algorithms has its own 

advantages and disadvantages.  

2.1.1  Supervised Learning 
There are several methodologies for implementing supervised 

learning in SNNs. The following subsections illustrate the diversity 

of the different approaches. 

2.1.1.1  SpikeProp 
SpikeProp is a gradient descent training algorithm for SNNs that is 

based on backpropagation. The discontinuous nature of spiking 

neurons causes problems with gradient descent algorithms, but 

SpikeProp overcomes this issue by only allowing each neuron to 

fire once and by training the neurons to fire at a desired time. The 

algorithm can only be used in a time-to-first-spike coding scheme 

which means that it cannot learn patterns consisting of multiple 

spikes. [13]. The target of SpikeProp is to learn a set of the desired 

firing times, denoted 𝑡𝑗
𝑑 , at a neuron 𝑗 for a given set of input 

patterns  𝑆𝑖𝑛 (𝑡). The SpikeProp algorithm has been derived for the 

neurons modeled by the Spike Response Model. In this model the 

membrane potential of neuron  𝑗 can be defined as: 

 

𝑈𝑚𝑗  𝑡 =   𝑤𝑖𝑗
𝑘

𝑘𝑖𝜖𝑁
𝑗
𝑝𝑟𝑒 𝜀(𝑡 − 𝑡𝑖

𝑜 − 𝑑𝑖𝑗
𝑘 )           

 

The set 𝑁𝑗
𝑝𝑟𝑒

 represents all pre-synaptic neurons of the neuron 𝑗. 

The term 𝑤𝑖𝑗
𝑘  is the weight of a synaptic terminal 𝑘 of the 

connection between neuron 𝑖 and 𝑗. It is assumed that 𝜀(t) =t/𝛕exp 

(1-t/𝛕), with some time constant. The parameter 𝑡𝑖
𝑜  is the firing 

time of the neuron 𝑖, and 𝑑𝑖𝑗
𝑘  is the delay of synaptic terminal.   

2.1.1.2  Evolutionary Learning  
Evolutionary strategies (ES) have been applied as a form of 

supervision for SNNs. ES differs from GAs in that they rely solely 

on the mutation operator. The accuracy of the resulting SNN 

provides the basis for determining the fitness function and the ES 

population was shown to produce convergence to an optimal 

solution. A limitation of this approach is that only the Time-to-

First spike is considered by the ES, this learning process is very 

time-consuming and this renders them unsuitable for online 

learning [14]. 

2.1.1.3  Supervised Hebbian Learning 
Supervised Hebbian Learning (SHL) [15] is arguably the most 

biologically plausible supervised SNN learning algorithm [16] 

.SHL simply seeks to ensure that an output neuron fires at the 

desired time, with the inclusion of a ‘teaching‘ signal. Since the 

teaching signal comprises of intracellular synaptic currents, 

supervision may be envisioned as supervision by other neurons. 

SHL does suffer from the limitation that even after the goal firing 

pattern has been reached; SHL continues to change the weights. 

Thus, constraints must be added to the learning rule to ensure 

stability. However, the problem with setting constraints is that it is 

not easy to know at which point in the training they should be 

applied. The weights will continue to increase after each training 

epoch and eventually could cause the network to be unstable, or at 

least to generalize poorly in the testing phase of learning [16]. Ruf 

and Schmitt proposed one of the first spike-based methods similar 

to SHL approach. In the first attempt, they defined the learning 

rule for the monosynaptic excitation. The learning process was 

based on three spikes (two pre-synaptic and one post-synaptic) 

generated during each learning cycle. The first Presynaptic spike at 

the time 𝑡1
𝑖𝑛 was considered as in input signal, whereas the second 

Presynaptic spike at 𝑡2
𝑖𝑛 = 𝑡𝑑  pointed to the target firing time for 

the postsynaptic neuron. The learning rule is 

 

𝛥𝑤 = 𝜂(𝑡𝑜𝑢𝑡 − 𝑡𝑑) 
 

Where 𝜂>0 is the learning rate and 𝑡𝑜𝑢𝑡  is the actual time of the 

postsynaptic spike.  

2.1.1.4 Remote Supervision Method (ReSuMe) 
The Remote Supervision Method (ReSuMe) is closely related to 

SHL but manages to avoid its drawbacks [16]. The ‗remote‘ aspect 

comes from the fact that teaching signals are not delivered as 

currents to the learning neuron (as with SHL). Instead a teaching 

signal and STDP-like Hebbian correlation are employed to co-

determine the changes in synaptic efficacy. In ReSuMe, the 

synaptic weights are modified according to the following equation: 

 
𝑑

𝑑𝑡
𝑤 𝑡 =  𝑆𝑑 𝑡 − 𝑆𝑙 𝑡   𝑎 +   𝑊 𝑠 𝑆𝑖𝑛  𝑡 − 𝑠 𝑑𝑠

∞

0
 , 

 

Where 𝑆𝑡 𝑡 ,𝑆𝑖𝑛 (𝑡) and 𝑆𝑙  are the target, pre and post synaptic 

trains respectively. The parameter 𝑎 expresses the amplitude of the 

non-correlation contribution to the total weight change while the 

convolution function represents the Hebbian-like modification of 

𝑤. The high learning ability of ReSuMe has been confirmed 

through extensive simulation experiments [16]. 

2.1.2 Unsupervised Learning 
STDP and BCM are under the category of unsupervised learning 

algorithm and they do not lead to required specific goal 

2.1.2.1  Spike Time Dependent Plasticity (STDP) 
The STDP learning rule dictates that long-term strengthening of 

the synaptic efficacy occurs when a pre-synaptic spike action 

potential precedes a post-synaptic one and this is called 

potentiation. Synaptic weakening occurs with the reverse temporal 

order of pre and postsynaptic spikes and this is called depression. 

The stability of STDP can be ensured by placing limits in the 

strengths of individual synapses and a multiplicative form of the 

rule introduces an adaptive aspect to learning, resulting in 

progressively smaller weight updates as learning progresses. 

 

 

 

 

 

 

 

Fig: 1 
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2.2  Dynamic Synapse and Receptive Field 
Synaptic efficacy changes on very short-time scales as well as over 

the longer time scale of training. The rate at which the synaptic 

efficacy changes, is determined by the supply of neurotransmitter 

and the number of receptor sites. Modeling the dynamics of the 

limited synaptic resources makes neurons selective to particular 

spike frequencies. The filtering effects of the dynamic synapses 

occur because there is a frequency of pre-synaptic spike train that 

optimizes the post-synaptic output [17]. It is particularly difficult 

to refrain dynamic synapses models to operate at specific 

frequency bands by changing the various model parameters. One 

way to guarantee that synapses are reactive to certain frequencies 

is with the use of Receptive Fields (RF). Experiments with retinal 

ganglion cells in the frog showed that the cell‘s response to a spot 

of light grew as the spot grew until some threshold had been 

reached. The part of the visual world that can influence the firing 

of a neuron is referred to as the RF of the neuron [18]. The 

implications for SNNs are that RFs can be used in conjunction 

with neuron models to promote feature selectivity and hence 

enhance the ‗richness‘ of information flow. 

 

3. FSNNs TOPOLOGY 
Biological neuron dynamics are determined by the relationships 

between a sequence of action potential, synaptic resources, post-

synaptic currents and membrane potentials. Neuron selectivity and 

information flow can be further strengthened using RFs [21]. 

Biological neurons show a form of human reasoning. Human 

reasoning is fuzzy in nature and involves much of uncertainty 

which involves a much higher level of knowledge representation 

[4]. Fuzzy rules may be expressed in terms such as 

 

  ``𝐼𝐹 ( 𝐴1 𝑖𝑠 𝑿1 ⋀ 𝐴2 𝑖𝑠 𝑿2 ⋀…⋀ 𝐴𝑁  𝑖𝑠 𝑿𝑁 , 𝑇𝐻𝐸𝑁(𝐵 𝑖𝑠 𝒁)′′ 

 

Where "𝐴"  and "𝐵" are both imprecisely (fuzzily) defined 

quantities, and  "𝑿" and  "𝒁"  are both fuzzy terms. Fuzzy logic, 

with fuzzy rules, has the potential to add human-like subjective 

reasoning capabilities to machine intelligences, which are usually 

based on bivalent Boolean logic. In this paper we use Fuzzy Logic 

to dictate the distribution of various biological plausible 

computational elements in SNNs. The Fuzzy IF-THEN rules are of 

the form:  

 

``𝐼𝐹 ( 𝑥1 𝑖𝑠 𝐴1 ⋀ 𝑥2 𝑖𝑠 𝐴2 ⋀…⋀ 𝑥𝑁  𝑖𝑠 𝐴𝑁 , 𝑇𝐻𝐸𝑁(𝑦 𝑖𝑠 𝑩)′′ 

 

Where 𝑥1 to 𝑥𝑁  represent the network inputs, 𝐴1 to 𝐴𝑁 represent 

hidden layer RFs aSnd 𝑦 is the network output. 

   

Fig: 2 

Input Layer: 

The input neuron is responsible for simply encoding the feature 

data into an appropriate frequency range. The spike trains are 

generated by linear encoding scheme. The encoding scheme takes 

the frequency data points and converts them into an inter-spike-

interval (ISI) which is used to create input spike train. Each data 

point scaled into a particular frequency range in linearly scaled into 

an input spike train of a particular sample length.  

Hidden Layer: 

Gaussian RFs are placed at every synapse between the input and 

hidden neurons. The job of RFs is to determine the relation 

between the input frequencies 𝑓𝑖  and the central operating 

frequency 𝐹𝑜  of RF. The weight is then scaled by 𝑘𝑖 . The process 

relates to the IF (𝑥𝑖  𝑖𝑠 𝐴𝑖) part of fuzzy rule, where 𝑥𝑖  is input and 

𝐴𝑖  represent the RF. By the use of RFs, proper tuning of dynamic 

synapse is not required. The function of each hidden layer neuron 

is to impose the remaining part of antecedent fuzzy IF-THEN rule, 

the conjunctive ‗AND‘, now summing the PSP by performing the 

disjunctive ‗OR‘. The main function of RFs connecting to hidden 

layer neuron is to filter the spikes to the output layer. 

 

Output Layer: 

The action potential with the synapse is only significantly high in 

magnitude for a very short interval of time.  This type of synapse 

has been considered as coincidence detector. It is then the task of 

supervised learning algorithm to associate the hidden layer neurons 

to the output layer neurons, thus performing fuzzy reasoning 

between the hidden layer (antecedents), and the output layer 

(consequents).  

 

4. RELATED WORK 
The XOR problem first has to be put into terms that it is 

understood by an SNN that transmits information in the form of 

spike trains. There are various ways in which the XOR problem 

may be encoded in terms of spikes. In a time-to-first-spike 

encoding scheme (Bohte et al., 2002), the XOR data can be 

translated into delays. However, although time-to-first-spike 

encoding schemes are successful at solving XOR but they lack 

biological plausibility. An alternative is to simply encode the 1s 

and -1s of the XOR truth table into two spike train frequencies. 

The frequencies used in this example are 60 and 100 (i.e. two 

numbers that will produce multiple spikes in a sample that are 

sufficiently different). 

 

 

 

 

 

 

 

 

 

 

Fig.3 

 

 

 

 

𝒙𝟏 𝒙𝟐 𝑪𝒍𝒂𝒔𝒔 

60 60 -1 

60 100 1 

100 60 1 

100 100 -1 

𝒙𝟏 𝒙𝟐 𝒅 

-1 -1 -1 

-1 1 1 

1 -1 1 

1 1 -1 
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Fig. 4 

 

 
Fig. 5 

 

 

 
 

Fig.6 

 

From Fig.4, it is an RBF like feed forward-network topology with 

two input neurons in input layer, four neurons are in hidden layer 

and two output neurons in output layer.  From the example it is 

clear that the 𝐻1𝑎𝑛𝑑 𝐻4 (activated when both the input variable are 

same) are associated with the output neuron of class 1. The linear 

encoding presented here this is a trivial matter, since any two 

successive spikes can be used calculate the ISI and hence 

determine the frequency. The RFs are Gaussians, and whenever an 

input frequency falls within the non-zero part of the Gaussian, the 

weight between the input and the hidden layer node is scaled 

accordingly. In this way, the neurons in the hidden layer are 

frequency-selective. Fig.5 shows the Gaussians used in the hidden 

layer nodes.  Without the Gaussian RFs the output from all the 

hidden layer neurons would be identical. With the RFs each hidden 

layer node responds to three of the four samples from the truth 

table. In fact, the hidden layer nodes only ignore an input data 

sample when both the 𝑥1𝑎𝑛𝑑 𝑥2 components of the sample lie 

outside the Gaussian RFs of the relevant hidden layer synapses. 

With standard RBF network the learning only occurs at the output 

layer of the network. The SHL algorithm is used, a supervisory 

spike train is delivered to the output neurons at the desired firing 

times. As with the SHL scheme STDP is used to modify the 

weights [19]. Unfortunately, with this approach, SHL has no way 

to ‗prop up‘ the weights [16] once neurons have stopped firing. 

STDP learning window [8] is used to modify the synaptic efficacy 

between the hidden and output weights. This modified form of 

SHL does not require an actual supervisory spike train as with the 

[19] approach. Fig. 5 illustrates the calculation of the weight 

updates for this modified form of SHL. By using this STDP 

window the weights are updated instead of supervisory spike. The 

modified SHL scheme controls the interaction of the STDP 

window, by allowing the positive weight updates when an output 

neuron is producing output spike at the desired output time Fig 

6(a). Similarly when an output neuron is producing spikes at an 

undesired time, the negative of the STDP window is used to 

decrease the weight. In this way, the modified SHL implements 

STDP and anti STDP in order to relate the hidden nodes to the 

correct class output neurons. The output neuron are now trained 

since spike activity at the output only occur at the desired times.  

But the issue with SHL is that it continues to change the weight 

even after the goal has been reached. A more desirable function of 

the hidden layer would be to only process input data when both 

RFs are activated by the input data variable 𝑥1𝑎𝑛𝑑 𝑥2. Bu utilizing 

a product or conjunctive AND, a hidden layer neuron would only 

process a particular input data when both  𝑥1𝑎𝑛𝑑 𝑥2 components of 

the data point activate the positive part of their respective RFs. 

This is how the fuzzy rule base in SNN topology is implemented 

firstly.  It is noticed by neurobiologist, the desired gating behavior 

in the experimental studies on RF dynamics [20]. In the presence 

of synchrony between inhibitory inputs, it is possible to implement 

an AND gate in hidden layer nodes. For the system containing 

more than two inputs the magnitude of the inhibitory part of the RF 

will need to be large since it will need to be large enough to cancel 

the sum of all other possible excitatory response. Implementing the 

inhibitory parts of the RFs results in a much clear cut classification 

of the input data by hidden layer neurons. This is due to the crisp 

classification of the hidden layer. Since each hidden node is crisply 

assigned to particular class, there is no negative weight updates for 

the output layer synapses. These weights receive far more positive 

weight increases than before and as such the output spike 

frequency arriving from these synapses is much higher than before. 

5. CONCLUSION AND FUTURE WORK 
 

We have solved the problem of dynamically optimizing network 

coverage and backbone connectivity in DWB-based wireless 

networks using genetic algorithm. This joint coverage coverage-

connectivity optimization problem is a quadratic minimization 

problem which is a quadratic cost function for both coverage and 

connectivity in term of the square distance between neighbouring 

nodes. We developed a completely distributed mobility control 

algorithm based on genetic algorithm that computes the relocation 

direction of nodes on the basis of current control location. The 

simulation produces the encouraging results for the cost based 

control algorithm that optimizes both network coverage and 

backbone connectivity. 

We proposed to use physical link cost models in coverage and 

connectivity optimization and perform quantitative analysis in 

terms of energy usage and bit-error rate. Further we would apply 

other methods of solution for optimization problem that minimize 

the cost of coverage and connectivity and improve energy 

consumption, throughput and end to end delay.  
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